Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 8(1): 10, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200223

RESUMO

The consensus molecular subtypes (CMS) of colorectal cancer (CRC) is the most widely-used gene expression-based classification and has contributed to a better understanding of disease heterogeneity and prognosis. Nevertheless, CMS intratumoral heterogeneity restricts its clinical application, stressing the necessity of further characterizing the composition and architecture of CRC. Here, we used Spatial Transcriptomics (ST) in combination with single-cell RNA sequencing (scRNA-seq) to decipher the spatially resolved cellular and molecular composition of CRC. In addition to mapping the intratumoral heterogeneity of CMS and their microenvironment, we identified cell communication events in the tumor-stroma interface of CMS2 carcinomas. This includes tumor growth-inhibiting as well as -activating signals, such as the potential regulation of the ETV4 transcriptional activity by DCN or the PLAU-PLAUR ligand-receptor interaction. Our study illustrates the potential of ST to resolve CRC molecular heterogeneity and thereby help advance personalized therapy.

2.
ACS Omega ; 9(3): 3894-3904, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284012

RESUMO

Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.

3.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37903590

RESUMO

BACKGROUND: Tumor samples from the phase III IMpower010 study were used to compare two programmed death-ligand 1 (PD-L1) immunohistochemistry assays (VENTANA SP263 and Dako 22C3) for identification of PD-L1 patient subgroups (negative, positive, low, and high expression) and their predictive value for adjuvant atezolizumab compared with best supportive care (BSC) in resectable early-stage non-small cell lung cancer (NSCLC). METHODS: PD-L1 expression was assessed by the SP263 assay, which measured the percentage of tumor cells with any membranous PD-L1 staining, and the 22C3 assay, which scored the percentage of viable tumor cells showing partial or complete membranous PD-L1 staining. RESULTS: When examining the concordance at the PD-L1-positive threshold (SP263: tumor cell (TC)≥1%; 22C3: tumor proportion score (TPS)≥1%), the results were concordant between assays for 83% of the samples. Similarly, at the PD-L1-high cut-off (SP263: TC≥50%; 22C3: TPS≥50%), the results were concordant between assays for 92% of samples. The disease-free survival benefit of atezolizumab over BSC was comparable between assays for PD-L1-positive (TC≥1% by SP263: HR, 0.58 (95% CI: 0.40 to 0.85) vs TPS≥1% by 22C3: HR, 0.65 (95% CI: 0.45 to 0.95)) and PD-L1-high (TC≥50% by SP263: HR, 0.27 (95% CI: 0.14 to 0.53) vs TPS≥50% by 22C3: HR, 0.31 (95% CI: 0.16 to 0.60)) subgroups. CONCLUSIONS: The SP263 and 22C3 assays showed high concordance and a comparable clinical predictive value of atezolizumab at validated PD-L1 thresholds, suggesting that both assays can identify patients with early-stage NSCLC most likely to experience benefit from adjuvant atezolizumab. TRIAL REGISTRATION NUMBER: NCT02486718.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Imuno-Histoquímica , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/patologia , Resultado do Tratamento , Adjuvantes Imunológicos
4.
Bioengineering (Basel) ; 10(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760201

RESUMO

The use of biological systems in manufacturing and medical applications has seen a dramatic rise in recent years as scientists and engineers have gained a greater understanding of both the strengths and limitations of biological systems. Biomanufacturing, or the use of biology for the production of biomolecules, chemical precursors, and others, is one particular area on the rise as enzymatic systems have been shown to be highly advantageous in limiting the need for harsh chemical processes and the formation of toxic products. Unfortunately, biological production of some products can be limited due to their toxic nature or reduced reaction efficiency due to competing metabolic pathways. In nature, microbes often secrete enzymes directly into the environment or encapsulate them within membrane vesicles to allow catalysis to occur outside the cell for the purpose of environmental conditioning, nutrient acquisition, or community interactions. Of particular interest to biotechnology applications, researchers have shown that membrane vesicle encapsulation often confers improved stability, solvent tolerance, and other benefits that are highly conducive to industrial manufacturing practices. While still an emerging field, this review will provide an introduction to biocatalysis and bacterial membrane vesicles, highlight the use of vesicles in catalytic processes in nature, describe successes of engineering vesicle/enzyme systems for biocatalysis, and end with a perspective on future directions, using selected examples to illustrate these systems' potential as an enabling tool for biotechnology and biomanufacturing.

5.
Nanoscale ; 15(23): 10159-10175, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272342

RESUMO

Enzyme activity can be many times enhanced in configurations where they are displayed on a nanoparticle (NP) and this same format sometimes even provides access to channeling phenomena within multienzyme cascades. Here, we demonstrate that such enhancement phenomena can be expanded to enzymatic cofactor recycling along with the coupled enzymatic processes that they are associated with. We begin by showing that the efficiency of glucose driven reduction of nicotinamide adenine dinucleotide (NAD+ → NADH) by glucose dehydrogenase (GDH) is enhanced ca. 5-fold when the enzyme is displayed on nanocrystalline semiconductor quantum dots (QDs) which are utilized as prototypical NP materials in our experimental assays. Coupling this enzymatic step with NADH-dependent lactate dehydrogenase (LDH) conversion of lactate to pyruvate also increases the latter's rate by a similar amount when both enzymes were jointly incorporated into self-assembled QD-based nanoclusters. Detailed agarose gel mobility assays and transmission electron microscopy imaging studies confirm that both tetrameric enzymes assemble to and crosslink the QDs into structured nanoclusters via their multiple-pendant terminal (His)6 sequences. Unexpectedly, control experiments utilizing blocking peptides to prevent enzyme-crosslinking of QDs resulted in even further enhancement of individual enzyme on-QD kinetic activity. This activity was also probed revealing that 200-fold excess peptide/QD addition enhanced individual GDH and LDH on-QD kcat a further 2- and 1.5×, respectively, above that seen just by QD display to a maximum of ∼10-fold GDH enhancement. The potential implications for how these enzyme kinetics-enhancing phenomena can be applied to single and multi-enzyme cascaded reactions in the context of cofactor recycling and cell-free synthetic biology are discussed.


Assuntos
Nanopartículas , Pontos Quânticos , NAD/química , Cinética , Nanopartículas/química , Pontos Quânticos/química , L-Lactato Desidrogenase/metabolismo , Peptídeos/química
6.
Mem Inst Oswaldo Cruz ; 118: e220263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37222309

RESUMO

BACKGROUND: Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity. OBJECTIVES: Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease. METHODS: To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface. FINDINGS: As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism. MAIN CONCLUSION: These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.


Assuntos
Doença de Chagas , Escherichia coli , Animais , Antígenos de Protozoários , Imunidade Inata , Parasitemia
7.
Bioengineering (Basel) ; 10(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37237653

RESUMO

All Gram-negative bacteria are believed to produce outer membrane vesicles (OMVs), proteoliposomes shed from the outermost membrane. We previously separately engineered E. coli to produce and package two organophosphate (OP) hydrolyzing enzymes, phosphotriesterase (PTE) and diisopropylfluorophosphatase (DFPase), into secreted OMVs. From this work, we realized a need to thoroughly compare multiple packaging strategies to elicit design rules for this process, focused on (1) membrane anchors or periplasm-directing proteins (herein "anchors/directors") and (2) the linkers connecting these to the cargo enzyme; both may affect enzyme cargo activity. Herein, we assessed six anchors/directors to load PTE and DFPase into OMVs: four membrane anchors, namely, lipopeptide Lpp', SlyB, SLP, and OmpA, and two periplasm-directing proteins, namely, maltose-binding protein (MBP) and BtuF. To test the effect of linker length and rigidity, four different linkers were compared using the anchor Lpp'. Our results showed that PTE and DFPase were packaged with most anchors/directors to different degrees. For the Lpp' anchor, increased packaging and activity corresponded to increased linker length. Our findings demonstrate that the selection of anchors/directors and linkers can greatly influence the packaging and bioactivity of enzymes loaded into OMVs, and these findings have the potential to be utilized for packaging other enzymes into OMVs.

8.
Eur J Cancer ; 184: 137-150, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921494

RESUMO

PURPOSE: MODUL is an adaptable, signal-seeking trial of biomarker-driven maintenance therapy following first-line induction treatment in patients with metastatic colorectal cancer (mCRC). We report findings from Cohorts 1 (BRAFmut), 3 (human epidermal growth factor 2 [HER2]+) and 4 (HER2‒/high microsatellite instability, HER2‒/microsatellite stable [MSS]/BRAFwt or HER2‒/MSS/BRAFmut/RASmut). METHODS: Patients with unresectable, previously untreated mCRC without disease progression following standard induction treatment (5-fluorouracil/leucovorin [5-FU/LV] plus oxaliplatin plus bevacizumab) were randomly assigned to control (fluoropyrimidine plus bevacizumab) or cohort-specific experimental maintenance therapy (Cohort 1: vemurafenib plus cetuximab plus 5-FU/LV; Cohort 3: capecitabine plus trastuzumab plus pertuzumab; Cohort 4: cobimetinib plus atezolizumab). The primary efficacy end-point was progression-free survival (PFS). RESULTS: Cohorts 1, 3 and 4 did not reach target sample size because of early study closure. In Cohort 1 (n = 60), PFS did not differ between treatment arms (hazard ratio, 0.95; 95% confidence intervals 0.50-1.82; P = 0.872). However, Cohort 1 exploratory biomarker data showed preferential selection for mitogen-activated protein kinase (MAPK) pathway mutations (mainly KRAS, NRAS, MAP2K1 or BRAF) in the experimental arm but not the control arm. In Cohort 3 (n = 5), PFS ranged from 3.6 to 14.7 months versus 4.0 to 5.4 months in the experimental and control arms, respectively. In Cohort 4 (n = 99), PFS was shorter in the experimental arm (hazard ratio, 1.44; 95% confidence intervals 0.90-2.29; P = 0.128). CONCLUSIONS: Vemurafenib plus cetuximab plus 5-FU/LV warrants further investigation as first-line maintenance treatment for BRAFmut mCRC. MAPK-pathway emergent genomic alterations may offer novel therapeutic opportunities in BRAFmut mCRC. Cobimetinib plus atezolizumab had an unfavourable benefit:risk ratio in HER2‒/MSS/BRAFwt mCRC. New strategies are required to increase the susceptibility of MSS mCRC to immunotherapy. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02291289.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Bevacizumab , Cetuximab , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila , Neoplasias do Colo/tratamento farmacológico , Neoplasias Retais/tratamento farmacológico , Biomarcadores , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Leucovorina
9.
Nat Commun ; 14(1): 1757, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36990995

RESUMO

Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped. Along with confirming channeling using classical experiments, its efficiency is enhanced several fold more by optimizing enzymatic stoichiometry with numerical simulations, switching from spherical QDs to 2-D planar nanoplatelets, and by ordering the enzyme assembly. Detailed analyses characterize assembly formation and clarify structure-function properties. For extended cascades with unfavorable kinetics, channeled activity is maintained by splitting at a critical step, purifying end-product from the upstream sub-cascade, and feeding it as a concentrated substrate to the downstream sub-cascade. Generalized applicability is verified by extending to assemblies incorporating other hard and soft nanoparticles. Such self-assembled biocatalytic nanoclusters offer many benefits towards enabling minimalist cell-free synthetic biology.


Assuntos
Nanopartículas , Pontos Quânticos , Nanopartículas/química , Pontos Quânticos/química , Biocatálise , Catálise , Cinética
10.
Microb Biotechnol ; 16(3): 494-506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36464922

RESUMO

The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.


Assuntos
Marinobacter , Biotecnologia , Fenótipo , Biologia Sintética , Engenharia Metabólica
11.
Mem. Inst. Oswaldo Cruz ; 118: e220263, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440673

RESUMO

BACKGROUND Vaccine development is a laborious craftwork in which at least two main components must be defined: a highly immunogenic antigen and a suitable delivery method. Hence, the interplay of these elements could elicit the required immune response to cope with the targeted pathogen with a long-lasting protective capacity. OBJECTIVES Here we evaluate the properties of Escherichia coli spherical proteoliposomes - known as outer membrane vesicles (OMVs) - as particles with natural adjuvant capacities and as antigen-carrier structures to assemble an innovative prophylactic vaccine for Chagas disease. METHODS To achieve this, genetic manipulation was carried out on E. coli using an engineered plasmid containing the Tc24 Trypanosoma cruzi antigen. The goal was to induce the release of OMVs displaying the parasite protein on their surface. FINDINGS As a proof of principle, we observed that native OMVs - as well as those carrying the T. cruzi antigen - were able to trigger a slight, but functional humoral response at low immunization doses. Of note, compared to the non-immunized group, native OMVs-vaccinated animals survived the lethal challenge and showed minor parasitemia values, suggesting a possible involvement of innate trained immunity mechanism. MAIN CONCLUSION These results open the range for further research on the design of new carrier strategies focused on innate immunity activation as an additional immunization target and venture to seek for alternative forms in which OMVs could be used for optimizing vaccine development.

12.
ACS Synth Biol ; 11(12): 4089-4102, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441919

RESUMO

Cell-free synthetic biology has emerged as a valuable tool for the development of rapid, portable biosensors that can be readily transported in the freeze-dried form to the point of need eliminating cold chain requirements. One of the challenges associated with cell-free sensors is the ability to simultaneously detect multiple analytes within a single reaction due to the availability of a limited set of fluorescent and colorimetric reporters. To potentially provide multiplexing capabilities to cell-free biosensors, we designed a modular semiconductor quantum dot (QD)-based reporter platform that is plugged in downstream of the transcription-translation functionality in the cell-free reaction and which converts enzymatic activity in the reaction into distinct optical signals. We demonstrate proof of concept by converting restriction enzyme activity, utilized as our prototypical sensing output, into optical changes across several distinct spectral output channels that all use a common excitation wavelength. These hybrid Förster resonance energy transfer (FRET)-based QD peptide PNA-DNA-Dye reporters (QD-PDDs) are completely self-assembled and consist of differentially emissive QD donors paired to a dye-acceptor displayed on a unique DNA encoding a given enzyme's cleavage site. Three QD-based PDDs, independently activated by the enzymes BamHI, EcoRI, and NcoI, were prototyped in mixed enzyme assays where all three demonstrated the ability to convert enzymatic activity into fluorescent output. Simultaneous monitoring of each of the three paired QD-donor dye-acceptor spectral channels in cell-free biosensing reactions supplemented with added linear genes encoding each enzyme confirmed robust multiplexing capabilities for at least two enzymes when co-expressed. The modular QD-PDDs are easily adapted to respond to other restriction enzymes or even proteases if desired.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência , DNA
13.
JCO Precis Oncol ; 6: e2200261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36265119

RESUMO

PURPOSE: Profiling of circulating tumor DNA (ctDNA) is increasingly adopted in the management of solid tumors, concurrent with increased availability of more comprehensive ctDNA panels. However, variable ctDNA shed can result in variable assay sensitivity. We studied the relationship between ctDNA tumor fraction (TF) and detection of actionable alterations across cancer types. METHODS: A total of 23,482 liquid biopsies (LBx) submitted between September 2020 and October 2021 were sequenced using a hybrid capture panel that reports genomic alterations (GAs) and genomic biomarkers across 324 cancer-related genes. The primary end points were the prevalence of targetable GAs by cancer type and detection in relationship to ctDNA TF. Sensitivity of detection in LBx was assessed in 1,289 patients with available tissue results. RESULTS: 94% (n = 22,130) of LBx had detectable ctDNA, with a median TF of 2.2%. LBx profiling detected GAs in National Comprehensive Cancer Network category 1 genes in 37% of lung, 30% of prostate, 36% of breast, and 51% of colon cancer cases. Potential germline GAs flagged on clinical reports were detected in genes including BRCA1/2, PALB2, CHEK2, and ATM. Polyclonal mutations in genes associated with resistance such as AR, ESR1, RB1, and NF1 were detected. The sensitivity of LBx to detect driver alterations identified in tissue biopsy from the same patient ranged from 58% to 86% but was consistently at or near 100% in cases with TF ≥ 10%. CONCLUSION: Elevated ctDNA shed is associated with both high sensitivity and negative predictive value for detection of actionable GAs. The presence of elevated TF suggests adequate tumor profiling and may reduce the value of subsequent reflex to confirmatory tissue testing in patients with negative LBx results.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Masculino , DNA Tumoral Circulante/genética , Neoplasias/diagnóstico , Biópsia Líquida , Biomarcadores Tumorais/genética , Genômica/métodos
14.
Eur J Cancer ; 170: 179-193, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660252

RESUMO

BACKGROUND: The clinical development of immune checkpoint-targeted immunotherapies has been disappointing so far in paediatric solid tumours. However, as opposed to adults, very little is known about the immune contexture of paediatric malignancies. METHODS: We investigated by gene expression and immunohistochemistry (IHC) the immune microenvironment of five major paediatric cancers: Ewing sarcoma (ES), osteosarcoma (OS), rhabdomyosarcoma (RMS), medulloblastoma (MB) and neuroblastoma (NB; 20 cases each; n = 100 samples total), and correlated them with overall survival. RESULTS: NB and RMS tumours had high immune cell gene expression values and high T-cell counts but were low for antigen processing cell (APC) genes. OS and ES tumours showed low levels of T-cells but the highest levels of APC genes. OS had the highest levels of macrophages (CSF1R, CD163 and CD68), whereas ES had the lowest. MB appeared as immune deserts. Tregs (FOXP3 staining) were higher in both RMS and OS. Most tumours scored negative for PD-L1 in tumour and immune cells, with only 11 of 100 samples positive for PD-L1 staining. PD-L1 and OX40 levels were generally low across all five indications. Interestingly, NB had comparable levels of CD8 by IHC and by gene expression to adult tumours. However, by gene expression, these tumours were low for T-cell cytotoxic molecules GZMB, GZMA and PRF1. Surprisingly, the lower the level of tumour infiltrative CD8 T-cells, the better the prognosis was in NB, RMS and ES. Gene expression analyses showed that MYCN-amplified NB have higher amounts of immune suppressive cells such as macrophages, myeloid-derived suppressor cells and Tregs, whereas the non-MYCN-amplified tumours were more infiltrated and had higher expression levels of Teff. CONCLUSIONS: Our results describe the quality and quantity of immune cells across five major paediatric cancers and provide some key features differentiating these tumours from adult tumour types. These findings explain why anti-PD(L)1 might not have had single agent success in paediatric cancers. These results provides the rationale for the development of biologically stratified and personalised immunotherapy strategies in children with relapsing/refractory cancers.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma de Ewing , Antígeno B7-H1/metabolismo , Criança , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Neuroblastoma/genética , Prognóstico , Rabdomiossarcoma/patologia , Microambiente Tumoral
15.
Infect Immun ; 90(5): e0005922, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35416705

RESUMO

The Borrelia burgdorferi BB0323 protein undergoes a complex yet poorly defined proteolytic maturation event that generates N-terminal and C-terminal proteins with essential functions in cell growth and infection. Here, we report that a borrelial protease, B. burgdorferi high temperature requirement A protease (BbHtrA), cleaves BB0323 between asparagine (N) and leucine (L) at positions 236 and 237, while the replacement of these residues with alanine in the mutant protein prevents its cleavage, despite preserving its normal secondary structure. The N-terminal BB0323 protein binds BbHtrA, but its cleavage site mutant displays deficiency in such interaction. An isogenic borrelial mutant with NL-to-AA substitution in BB0323 (referred to as Bbbb0323NL) maintains normal growth yet is impaired for infection of mice or transmission from infected ticks. Notably, the BB0323 protein is still processed in Bbbb0323NL, albeit with lower levels of mature N-terminal BB0323 protein and multiple aberrantly processed polypeptides, which could result from nonspecific cleavages at other asparagine and leucine residues in the protein. The lack of infectivity of Bbbb0323NL is likely due to the impaired abundance or stoichiometry of a protein complex involving BB0238, another spirochete protein. Together, these studies highlight that a precise proteolytic event and a particular protein-protein interaction, involving multiple borrelial virulence determinants, are mutually inclusive and interconnected, playing essential roles in the infectivity of Lyme disease pathogens.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Asparagina/metabolismo , Proteínas de Bactérias/metabolismo , Leucina/metabolismo , Doença de Lyme/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Proteólise , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
16.
Mol Cancer Ther ; 21(6): 974-985, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364611

RESUMO

New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Imunoglobulinas , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoglobulinas/imunologia , Camundongos , Instabilidade de Microssatélites , Linfócitos T/imunologia
17.
PLoS One ; 17(3): e0265274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298538

RESUMO

Cell-free protein synthesis systems (CFPS) utilize cellular transcription and translation (TX-TL) machinery to synthesize proteins in vitro. These systems are useful for multiple applications including production of difficult proteins, as high-throughput tools for genetic circuit screening, and as systems for biosensor development. Though rapidly evolving, CFPS suffer from some disadvantages such as limited reaction rates due to longer diffusion times, significant cost per assay when using commercially sourced materials, and reduced reagent stability over prolonged periods. To address some of these challenges, we conducted a series of proof-of-concept experiments to demonstrate enhancement of CFPS productivity via nanoparticle assembly driven nanoaggregation of its constituent proteins. We combined a commercially available CFPS that utilizes purified polyhistidine-tagged (His-tag) TX-TL machinery with CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) known to readily coordinate His-tagged proteins in an oriented fashion. We show that nanoparticle scaffolding of the CFPS cross-links the QDs into nanoaggregate structures while enhancing the production of functional recombinant super-folder green fluorescent protein and phosphotriesterase, an organophosphate hydrolase; the latter by up to 12-fold. This enhancement, which occurs by an undetermined mechanism, has the potential to improve CFPS in general and specifically CFPS-based biosensors (faster response time) while also enabling rapid detoxification/bioremediation through point-of-concern synthesis of similar catalytic enzymes. We further show that such nanoaggregates improve production in diluted CFPS reactions, which can help to save money and extend the amount of these costly reagents. The results are discussed in the context of what may contribute mechanistically to the enhancement and how this can be applied to other CFPS application scenarios.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Sistema Livre de Células , Biossíntese de Proteínas , Proteínas
18.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35190375

RESUMO

BACKGROUND: The efficacy of atezolizumab (A) and/or bevacizumab (B) with carboplatin/paclitaxel (CP) chemotherapy was explored in the phase III, randomized IMpower150 study in patients with non-squamous non-small cell lung cancer (NSCLC) according to KRAS mutations (mKRAS) and co-occurring STK11, KEAP1, or TP53 mutations. METHODS: Mutation status was determined by circulating tumor DNA next-generation sequencing. Overall survival (OS) and progression-free survival (PFS) were analyzed in a mutation-evaluable intention-to-treat population (MEP; n=920) and SP263 (programmed cell death ligand 1 (PD-L1)) biomarker-evaluable population (n=774). RESULTS: Within the mKRAS population (24.5% of MEP), ABCP showed numerical improvements vs BCP in median OS (19.8 vs 9.9 months; HR 0.50; 95% CI 0.34 to 0.72) and PFS (8.1 vs 5.8 months; HR 0.42; 95% CI 0.29 to 0.61)-greater than with ACP (OS: 11.7 vs 9.9 months; HR 0.63; 95% CI 0.43 to 0.91; PFS: 4.8 vs 5.8 months; HR 0.80; 95% CI 0.56 to 1.13) vs BCP. Across PD-L1 subgroups in mKRAS patients, OS and PFS were longer with ABCP vs BCP, but OS with ACP was similar to BCP in PD-L1-low and PD-L1-negative subgroups. Conversely, in KRAS-WT patients, OS was longer with ACP than with ABCP or BCP across PD-L1 subgroups. KRAS was frequently comutated with STK11, KEAP1, and TP53; these subgroups conferred different prognostic outcomes. Within the mKRAS population, STK11 and/or KEAP1 mutations were associated with inferior OS and PFS across treatments compared with STK11-WT and/or KEAP1-WT. In mKRAS patients with co-occurring mSTK11 and/or mKEAP1 (44.9%) or mTP53 (49.3%), survival was longer with ABCP than with ACP or BCP. CONCLUSIONS: These analyses support previous findings of mutation of STK11 and/or KEAP1 as poor prognostic indicators. While clinical efficacy favored ABCP and ACP vs BCP in these mutational subgroups, survival benefits were greater in the mKRAS and KEAP1-WT and STK11-WT population vs mKRAS and mKEAP1 and mSTK11 population, suggesting both prognostic and predictive effects. Overall, these results suggest that atezolizumab combined with bevacizumab and chemotherapy is an efficacious first-line treatment in metastatic NSCLC subgroups with mKRAS and co-occurring STK11 and/or KEAP1 or TP53 mutations and/or high PD-L1 expression.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Adulto , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bevacizumab/farmacologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Mutação , Prognóstico , Intervalo Livre de Progressão , Estudos Retrospectivos
19.
ACS Biomater Sci Eng ; 8(2): 493-501, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030308

RESUMO

Enzymatic decontamination of organophosphate compounds offers a biofriendly pathway to the neutralization of highly dangerous compounds. Environmental dissemination of enzymes, however, is an ongoing problem considering the costly process of production and chemical modification for stability that can diminish catalytic activity. As a result, there is interest in the potential for enzymatic encapsulation in situ or into nascent bacterial membrane vesicles to improve catalytic stability across various environmental challenges associated with storage and field deployment. In this study, we have engineered bacterial outer membrane vesicles (OMVs) to encapsulate the diisopropyl fluorophosphatase (DFPase), an enzyme originally isolated from squid Loligo vulgaris and capable of hydrolyzing diisopropyl fluorophosphate (DFP) and other organophosphates compounds. Here we employed a recombinant lipopeptide anchor to direct recruitment of DFPase into OMVs, which were isolated from culture media and tested for catalytic activity against both diisopropyl fluorophosphate and paraoxon. Our encapsulation strategy prevented the loss of catalytic activity despite lyophilization, extended storage time (2 days), and extreme temperatures up to 80 °C. These data underscore the appeal of DFPase as a biodecontaminant of organophosphates as well as the potential for OMV packaging in stabilized field deployment applications.


Assuntos
Loligo , Hidrolases de Triester Fosfórico , Animais , Membrana Externa Bacteriana , Loligo/metabolismo , Hidrolases de Triester Fosfórico/química , Hidrolases de Triester Fosfórico/metabolismo , Temperatura
20.
Microb Biotechnol ; 15(4): 1055-1057, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34689413

RESUMO

This is a highlight on the article 'Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system' by Yue Liu, Eddy Smid and Tjakko Abee.


Assuntos
Vesículas Extracelulares , Lactococcus lactis , Bactérias Gram-Positivas , Lactococcus lactis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...